Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. M adalah titik tengah EH. Jarak titik M ke AG adalah
Pertanyaan
1 Jawaban
-
1. Jawaban arsetpopeye
Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. M adalah titik tengah EH. Jarak titik M ke AG adalah
Pembahasan :
Kubus dengan rusuk a cm
panjang diagonal sisi = a√2 cm
panjang diagonal ruang = a√3 cm
contoh diagonal sisi :
AC, BD, HF, EG dan sebagainya
contoh diagonal ruang :
AG, HB, CE, DF
Kubus dengan rusuk 8 cm maka diagonal ruang AG = 8√3 cm
M titik tengah EH maka EM = MH = 4 cm
Untuk mencari jarak M ke AG, kita buat segitiga MAG dengan ukuran sisi-sisinya yaitu :
AG = 8√3 cm => diagonal ruang
AM = √(AE² + EM²)
AM = √(8² + 4²)
AM = √(64 + 16)
AM = √80
AM = √16 × √5
AM = 4√5 cm
MG = √(HM² + HG²)
MG = √(4² + 8²)
MG = √(16 + 64)
MG = √80
MG = 4√5 cm
Jadi segitiga MAG adalah segitiga sama kaki (AM = MG = 4√5 cm)
Jarak M ke AG adalah tinggi segitiga sama kaki dengan alas AG yaitu MO (O titik tengah AG sehingga AO = OG = 1/2 × 8√3 = 4√3 cm)
MO = √(MG² - OG²)
MO = √((4√5)² - (4√3)²)
MO = √(80 - 48)
MO = √32
MO = √16 × √2
MO = 4√2
Jadi jarak M ke AG adalah 4√2 cm
Untuk contoh soal lainnya, bisa dilihat di link berikut
https://brainly.co.id/tugas/6218873
===========================
Kelas : 12
Mapel : Matematika
Kategori : Geometri Bidang Ruang
Kata Kunci : Diagonal sisi, diagonal ruang, pythagoras
Kode : 12.2.2Pertanyaan Lainnya